Version 1.1

Using Regular Expressions in Excel VBA

by brettdj@vbaexpress.com
What is the RegExp object?

A brief history from http://en.wikipedia.org/wiki/Regular_expression
The origin of regular expressions lies in automata theory and formal language theory (both part of theoretical computer science). These fields study models of computation.
Okay, that’s the “technical” discussion. Read it if you like. But what practical use does RegExp have for VBA?

The RegExp object provides a powerful parsing tool to efficiently handle string searches or string replacements. Microsoft Word provides a watered down version for text searching via Edit(Find(Special.

Accessing the RegExp Object

The RegExp Object is accessed in Excel (all versions) via either Early or Late Binding.

Early Binding requires that a VBA reference is set from the Visual Basic Editor via Tools(References(Microsoft VBScript Regular Expression 5.5.

[image: image1.png]References - VBAProject

Avalable References:

Vit S G =
Microsoft Tahoe Shell Extension Library Browse.
Microsoft YBA MT Project Designer Runtime ﬂ

Help

==
(o |
(|

Micrasoft Visio 2002 Type Lbrary
Mitneft Visn Dt Gatherer 10 Tune ibrary.
|

Mirosoft VBsaript Regular Expressions 5.5

Location: CHWINDOWS{system32ivbscript.dii3
Language: Standard

The reference can be set programmatically.

Sub Make_VBS_Ref()

 On Error Resume Next

 'in case ref exists
 ActiveWorkbook.VBProject.References.AddFromGuid "{3F4DACA7-160D-11D2-A8E9-00104B365C9F}", 5, 5

End Sub

The advantage of Early Binding is that it provides VBA intellisense. But as there are only three RegExp Methods, four RegExp Properties and two RegExp Collections I prefer Late Binding as it eliminates the need for a user to set the Reference.
RegExp Methods

The Execute method is used to extract a match or matches of a Regular Expression pattern from a string.

The Replace method is used to find a match or matches of a Regular Expression pattern in a string and then replace them with a new string.

The Test Method is used to test whether a Regular Expression pattern is matched in a string. The Test Method returns True or False. It is equivalent to testing whether the number of matches found is greater than 0.

RegExp Method Properties

There are four properties of Regular Expressions Methods.

	Pattern
	see table below from
http://msdn.microsoft.com/library/default.asp?url=/library/en us/script56/html/vsmthreplace.asp

	Global
	True or False (default).
True finds all matches in a string
False finds the first match only

	IgnoreCase
	True or False (default).
True ignores case
False is case sensitive

	MultiLine
	True or False (default).
True will search each line of a multline string
False searches only the current line

Pattern Table

	Character
	Description

	\
	Marks the next character as either a special character or a literal. For example, "n" matches the character "n". "\n" matches a newline character. The sequence "\\" matches "\" and "\(" matches "(".

	^
	Matches the beginning of input.

	$
	Matches the end of input.

	*
	Matches the preceding character zero or more times. For example, "zo*" matches either "z" or "zoo".

	+
	Matches the preceding character one or more times. For example, "zo+" matches "zoo" but not "z".

	?
	Matches the preceding character zero or one time. For example, "a?ve?" matches the "ve" in "never".

	.
	Matches any single character except a newline character.

	(pattern)
	Matches pattern and remembers the match. The matched substring can be retrieved from the resulting Matches collection, using Item [0]...[n]. To match parentheses characters (), use "\(" or "\)".

	x|y
	Matches either x or y. For example, "z|wood" matches "z" or "wood". "(z|w)oo" matches "zoo" or "wood".

	{n}
	n is a nonnegative integer. Matches exactly n times. For example, "o{2}" does not match the "o" in "Bob," but matches the first two o's in "foooood".

	{n,}
	n is a nonnegative integer. Matches at least n times. For example, "o{2,}" does not match the "o" in "Bob" and matches all the o's in "foooood." "o{1,}" is equivalent to "o+". "o{0,}" is equivalent to "o*".

	{n,m}
	m and n are nonnegative integers. Matches at least n and at most m times. For example, "o{1,3}" matches the first three o's in "fooooood." "o{0,1}" is equivalent to "o?".

	[xyz]
	A character set. Matches any one of the enclosed characters. For example, "[abc]" matches the "a" in "plain".

	[^xyz]
	A negative character set. Matches any character not enclosed. For example, "[^abc]" matches the "p" in "plain".

	[a-z]
	A range of characters. Matches any character in the specified range. For example, "[a-z]" matches any lowercase alphabetic character in the range "a" through "z".

	[^m-z]
	A negative range characters. Matches any character not in the specified range. For example, "[m-z]" matches any character not in the range "m" through "z".

	\b
	Matches a word boundary, that is, the position between a word and a space. For example, "er\b" matches the "er" in "never" but not the "er" in "verb".

	\B
	Matches a non-word boundary. "ea*r\B" matches the "ear" in "never early".

	\d
	Matches a digit character. Equivalent to [0-9].

	\D
	Matches a non-digit character. Equivalent to [^0-9].

	\f
	Matches a form-feed character.

	\n
	Matches a newline character.

	\r
	Matches a carriage return character.

	\s
	Matches any white space including space, tab, form-feed, etc. Equivalent to "[\f\n\r\t\v]".

	\S
	Matches any nonwhite space character. Equivalent to "[^ \f\n\r\t\v]".

	\t
	Matches a tab character.

	\v
	Matches a vertical tab character.

	\w
	Matches any word character including underscore. Equivalent to "[A-Za-z0-9_]".

	\W
	Matches any non-word character. Equivalent to "[^A-Za-z0-9_]".

	\num
	Matches num, where num is a positive integer. A reference back to remembered matches. For example, "(.)\1" matches two consecutive identical characters.

	\n
	Matches n, where n is an octal escape value. Octal escape values must be 1, 2, or 3 digits long. For example, "\11" and "\011" both match a tab character. "\0011" is the equivalent of "\001" & "1". Octal escape values must not exceed 256. If they do, only the first two digits comprise the expression. Allows ASCII codes to be used in regular expressions.

	\xn
	Matches n, where n is a hexadecimal escape value. Hexadecimal escape values must be exactly two digits long. For example, "\x41" matches "A". "\x041" is equivalent to "\x04" & "1". Allows ASCII codes to be used in regular expressions.

RegExp Collections

A Matches collection contains individual Match objects, and can be only created using the Execute method of the RegExp object.

There are three useful properties of Regular Expressions Methods.

	FirstIndex
	The string position at which the match occurs

	Count
	The number of matches in the string

	Length
	The length of the match

SubMatches
A SubMatches collection contains individual submatch strings, and can only be created using the Execute method of the RegExp object. Note that the submatch strings can also be accessed but not created via the Match method of the RegExp object.

Recommended Links

http://www.electrified.net/dev/RegexEvaluate.aspx
http://en.wikipedia.org/wiki/Regular_expression
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/html/vtoriregularexpressionsobjectpropmeth.asp
